5 августа 2011 (14:39) / просмотров: 214
Защита от инфекции с помощью антител
Наиболее ярким примером защитного действия антител является иммунная реакция организма на бактериальную инфекцию. Циркулирующие в крови антитела связываются с антигенными детерминантами поверхностных антигенов бактерий. Комплекс микроорганизма с антителом запускает каскад химических реакций, получивших название «классический путь активации комплемента». Конечным продуктом такой активации является образование мембраноатакующего комплекса (МАК), который наносит клеточной стенке бактерии множественные повреждения.
Помимо непосредственного воздействия на бактериальную клетку, защитные свойства антител реализуются путем нейтрализации бактериальных токсинов. Молекула антитела присоединяется к молекуле токсина вблизи активного центра и стереохимически блокирует взаимодействие токсина с макромолекулярным субстратом. Потеря токсичности может также происходить за счет аллостерических конформационных изменений, когда антитело уже связалось с токсином на некотором расстоянии от активного центра молекулы токсина уреаплазмоз анализ.
Связывание антител с инкапсулированными бактериями облегчает фагоцитоз последних полиморфноядерными лейкоцитами и макрофагами. Этот феномен называется опсонизацией. Известно, что неопсонизированным бактериям, имеющим капсулу, как правило, удается избежать фагоцитоза.
РОЛЬ ОСТРОЙ ВОСПАЛИТЕЛЬНОЙ РЕАКЦИИ В ЗАЩИТЕ ОРГАНИЗМА ОТ ИНФЕКЦИИ
Классическая формула — rubor, tumor, calor, dolor et functio lesa symptomata inflammationis sunt — употребляется в медицине еще с античных времен. Однако только сегодня мы можем представить подробный «сценарий» этого симптомокомплекса, одно из центральных мест в котором занимает система комплемента.
Активация комплемента. Комплемент представляет собой сложный белковый комплекс, состоящий примерно из 20 белков, который, подобно белкам свертывания крови, активируется за счет каскадного процесса, когда продукт предыдущей реакции выполняет роль катализатора следующей. Известно два пути активации комплемента: классический и альтернативный.
Активация комплемента по классическому пути осуществляется, как правило, при агрегации молекул иммуноглобулина или при связывании иммуноглобулинов (антител) с соответствующим антигеном, причем последний может быть как растворимым, так и корпускулярным (бактерии, клетки). Важным моментом в процессе активации является конфигурация молекулы иммуноглобулина, которая может изменяться в ходе реакции антиген — антитело или неспецифической агрегации молекул иммуноглобулинов между собой. Непосредственно в активацию комплемента вовлечен домен СН2 Fc-фрагмента молекулы иммуноглобулина. Одним из условий для реализации этого процесса является расположение двух Н-цепей на определенном расстоянии одна от другой. В молекуле IgM это условие обеспечивается за счет собственной конфигурации молекулы, а в реакциях с IgG такое взаиморасположение Н-цепей возникает с частотой 1:800, в связи с чем способность IgG к связыванию комплемента существенно ниже, чем у IgM.
На раннем этапе активации комплемента по классическому пути происходит активация С1. В присутствии Са2+ образуется тетрамер C1r2—Ca2+—C1s2, который связывается с одной молекулой C1q (рис. 6). Комплекс С1 обладает протеазной активностью. Его естественными субстратами являются С2 и С4. В плазме присутствует также ингибитор этого фермента (C1—1nh). На следующем этапе образуется активный С3-комплекс (С3-конвертаза). С4 состоит из трех полипептидных цепей (?, ? и ?), связанных между собой дисульфидными мостиками и нековалентными связям„и. Под действием C1s из ?-цепи образуется С4а — фермент с молекулярной массой 6000. В то же время C1-эстераза превращает С4 в С4b-форму, способную связываться с поверхностью клетки. К связанному с клеткой С4b присоединяется С2а (продукт расщепления С2 под действием С1). Активированный комплекс С4b—С2а представляет собой С3-конвертазу, способную расщеплять С3 на С3а и С3b,. Мембраносвязанный С3b взаимодействует с С5 и становится субстратом для С3-конвертазы, которая расщепляет С5 на С5а и С5b, причем последний остается связанным с мембраной. С5b последовательно связывает С6, С7 и С8, образуя комплекс, способствующий пространственной ориентации двух или более молекул С9. Проникая внутрь липидного слоя и полимеризуясь, они образуют кольцеобразный мембраноатакующий комплекс (МАК). Последний представляет собой трансмембранный канал, проницаемый для электронов и воды (рис. 7). За счет более высокого коллоидно-осмотического давления внутри клетки в нее начинают поступать Na+ и вода, в результате чего клетка набухает и лизируется.
Рис. 6. Взаимодействие комплекса C1 (C1q, С1r2, C1s2) с двумя молекулами IgG, связавшими антиген.
Другие биологические функции системы комплемента. Помимо лизиса клеток, происходящего за счет встраивания в мембрану МАК, белки системы комплемента облегчают адгезию микроорганизмов на поверхности фагоцитирующей клетки. Это осуществляется с помощью рецепторов для СЗb, которые имеются на поверхности фагоцитов. СЗа и С5а, образующиеся в процессе активации комплемента, могут действовать непосредственно на нейтрофилы и макрофаги, вызывая активизацию клеточного дыхания. Кроме того, являясь анафилотоксинами, они способствуют выбросу медиаторов воспаления из тучных клеток и циркулирующих в крови базофилов.
Белки острой фазы. В ответ на инфекцию, повреждение тканей и стресс в крови резко повышается концентрация ряда белков, получивших общее название белков острой фазы. К ним относятся С-реактивный белок, сывороточный амилоидный А-белок, ?1-кислый гликопротеин (орозомукоид), ?1-антитрипсин, ?2-макроглобулин, фибриноген, церулоплазмин, С9-компонент комплемента и фактор В. Микробные эндотоксины стимулируют выработку интерлейкина-1 и фактора некроза опухолей, являющихся эндогенными пирогенами. Интерлейкин-1 стимулирует клетки печени к продукции повышенного количества С-реактивного белка, концентрация которого в плазме может повышаться в 1000 раз и более. Этот белок представляет собой замкнутый пентамер, способный связываться с теми микроорганизмами, в состав мембраны- которых входит фосфорилхолин. Образовавшийся комплекс активирует систему комплемента по классическому пути, что приводит к связыванию С3b с поверхностью микроба, его опсонизации и фагоцитозу.
Рис. 7. Образование трансмембранного канала (мембраноатакующего комплекса) за счет полимеризации С9.
Молекула С9 содержит гидрофильный домен, который взаимодействует с комплексом С5b-8, и участок, обладающий выраженной гидрофобностью, за счет которого С9 взаимодействует с липидной мембраной. Под влиянием комплекса С5b-8 происходит полимеризация нескольких молекул С9, после чего циркулирующий комплекс поли-С9 встраивается в двухслойную липидную мембрану, формируя сквозной белковый канал.
Другие факторы неспецифической эффекторной системы защиты. Лизоцим (мурамилпептидаза) — фермент, расщепляющий мурамиловую кислоту в составе оболочки грамположительных микроорганизмов вплоть до лизиса микробной клетки. Лизоцим синтезиру ется гранулоцитами, моноцитами и макрофагами, и случае инфекции грамотрицательными микроорганизмами лизоцим действует совместно с системой комплемента. В норме лизоцим присутствует в достаточно высоких количествах в различных физиологических секретах и жидкостях организма. Определение его уровня в слюне, слезной жидкости и других секретах может дать важную информацию о состоянии антимикробной защиты. Необходимо отметить, что при миеломоноцитарном лейкозе возможно резкое повышение титров лизоцима.
Фибронектин (холодовой нерастворимый глобулин) содержится в плазме и тканевых жидкостях, синтезируется макрофагами и отличается крайне высокой чувствительностью к действию протеаз. Рецепторы к фибронектину имеются практически на всех клетках человека. Сама же молекула фибронектина имеет участки для связывания коллагена, фибрина, C1q и некоторых бактерий (стафилококки, стрептококки). Связывание этих лигандов с «плавающим» носителем рецепторов приводит к конформационным изменениям белка, который очень быстро ферментируется.